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We predict theoretically and verify experimentally the suppression of chaos in the Lorenz system driven by
a high-frequency periodic or stochastic parametric force. We derive the theoretical criteria for chaos suppres-
sion and verify that they are in a good agreement with the results of numerical simulations and the experi-
mental data obtained for an analog electronic circuit.
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I. INTRODUCTION

Control of the chaotic dynamics of complex nonlinear
systems is one of the most important and rapidly developing
topics in applied nonlinear science. In particular, the concept
of chaos control, first introduced in Ref. �1�, has attracted a
great deal of attention over the past decade. Among different
methods for controlling chaos that have been suggested by
now, the so-called nonfeedback control is attractive because
of its simplicity: no measurements or extra sensors are re-
quired. The idea of this method is to change the complex
behavior of a nonlinear stochastic system by applying a
properly chosen external force. It is especially advantageous
for ultrafast processes, e.g., at the molecular or atomic level,
where no possibility to measure the system variables exists.

Many of the suggested nonfeedback methods employ ex-
ternal forces acting at the system frequencies �2�, including
parametric perturbations with the frequency that is in reso-
nance with the main driving force. In particular, changing the
phase and frequency of a parameter perturbation in a bistable
mechanical device was shown to either decrease or increase
the threshold of chaos �3�. Similarly, unstable periodic orbits
are known to be stabilized by a low-frequency modulation of
a system control parameter �4�, when the control frequency is
much lower than the system frequency.

However, the chaos suppression by means of small peri-
odic perturbations �2� will be efficient when the frequency of
these periodic perturbations exactly coincides with some
well-defined system frequency. For autonomous chaotic sys-
tems, such resonances are hard to find and successful sup-
pression of chaos may only be achieved by trial and error.
The possibility to change significantly the system dynamics
by applying a high- �rather than low-� frequency force is
known for almost a century. As a textbook example, we men-
tion the familiar stabilization of a reverse pendulum �known
as the Kapitza pendulum� by rapid vertical oscillations of its
pivot �5�. This discovery triggered the development of vibra-
tional mechanics �6� where the general analysis of nonlinear
dynamics in the presence of rapidly varying forces is based
on the Krylov-Bogoljubov averaging method �7�. In the con-
trol theory, the high-frequency forces and parameter modu-
lations are usually used for the vibrational control of noncha-
otic nonlinear systems �8�. However, as was shown for the

example of the Duffing oscillator �9,10�, chaos suppression
can also be achieved by applying a high-frequency paramet-
ric force. Later, chaos suppression in the Belousov-
Zhabotinsky reaction was demonstrated numerically by add-
ing white noise �11�, and the effect of random parametric
noise on a periodically driven damped nonlinear oscillator
was studied by the Melnikov analysis �12�.

The suppression of chaos by high-frequency parametric
modulations has a little in common with other feedback
chaos control techniques which recently became popular for
stabilizing unstable periodic orbits. Those techniques are ei-
ther highly sophisticated and can only be applied to very
slow systems �1�, or they suffer from various other con-
straints, e.g., missing torsion, control latency, vanishing ba-
sins of attraction, etc. �13�. In contrast, the mechanism of
high-frequency parametric modulation is very general, and it
can be understood in terms of an effective renormalization of
the modulated system parameters. What in fact is observed
when starting from a chaotic state and increasing the modu-
lation amplitude is a debifurcation route “out of the chaos.”
So the actual modulation amplitude needed to suppress the
chaos depends not only on the specific system, but also on
the sensitivity of the chaotic state on the specific parameter
modulated and, accordingly, on the distance of its present
value from the threshold for chaos and on the final state
desired. The advantages of this technique, however, are its
simplicity, universality and robustness, no detailed preknowl-
edge, modeling, fine-tuning �2� or highly sophisticated real-
time analysis �1� of the system is needed, but the price is
generally a larger modulation amplitude.

In this paper we apply the concepts of nonresonant non-
feedback control to the Lorenz system and demonstrate ana-
lytically, numerically, and also experimentally that the sup-
pression of the chaotic dynamics can be achieved by
applying a high-frequency parametric or random parametric
force. The Lorenz system, found in 1963, is known to pro-
duce a canonical chaotic attractor in a simple three-
dimensional autonomous system �14,15�, and it can be ap-
plied to describe many interesting nonlinear systems, ranging
from thermal convection �16� to laser dynamics �17�.

The paper is organized as follows. In Sec. II we present
our model and outline the theoretical method and results. By
applying the averaging method, we derive the effective Lo-
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renz equations with the renormalized control parameter and
obtain the conditions for chaos suppression. In Sec. III, we
demonstrate the suppression of chaos by means of direct nu-
merical simulations and also present the experimental data
obtained for an analog electronic circuit. Finally, Sec. IV
concludes the paper.

II. THEORETICAL APPROACH

A. Model

We consider the familiar Lorenz system �14� driven by a
parametric force. In dimensionless variables, the nonlinear
dynamics is governed by the equations

ẋ = ��y − x� ,

ẏ = r�1 + f�t��x − y − xz ,

ż = xy − bz , �1�

where the dots stand for the derivatives in time, �, r, and b
are the parameters of the Lorenz model, and the function f�t�
describes a parametric force. For definiteness but without
restrictions of generality, we select the standard set of the
parameter values, �=10 and b=8/3, whereas the parameter r
is assumed to vary. It is well known �14� that, in the absence
of the parametric driving force f�t�, the original Lorenz equa-
tions demonstrate different dynamical regimes on variation
of the control parameter r, which are associated with the
existence and stability of several equilibrium states. In brief,
the system dynamics can be characterized by three regimes.

The G1 regime, for r�1: there exists the only stable fixed
point at the origin, �x ,y ,z�= �0,0 ,0�.

The G2 regime, for 1�r�24.74: the origin becomes un-
stable, two new fixed points appear, �x ,y ,z�
= �±�b�r−1� , ±�b�r−1� ,r−1�.

The G3 regime, for r�24.74: no stable fixed points exist,
chaotic dynamics occur with a strange attractor.

We consider the special case of the general model �1�,
assuming that the characteristic frequency of the parametric
force f�t� is much larger than the characteristic frequency of
the unforced Lorenz system, where the frequency �which is
the mean-time derivative of the phase� of the Lorenz system
can be defined as �18�

�0 = lim
T→�

2�N�T�
T

, �2�

where N�T� is the number of turns performed in T.

B. Periodic driving force

First, we consider the case of a periodic driving force,

f�t� = k cos��t� . �3�

Assuming that the frequency of parametric modulations is
large ����0�, we apply an asymptotic method �5,6� based
on a separation of different time scales, and derive the effec-
tive equations that describe the slowly varying dynamics. To

do this, we follow Ref. �9� and decompose every variable
into a sum of slowly and rapidly varying parts, i.e.,

x = X + �, y = Y + 	, z = Z + 
 , �4�

where the functions ��t�, 	�t�, and 
�t� describe fast oscilla-
tions around the slowly varying envelope functions X�t�,
Y�t�, and Z�t�, respectively. The rapidly oscillating correc-
tions are assumed to be small in comparison with the slowly
varying parts, and their mean values during an oscillation
period vanish, i.e., �x�=X, �y�=Y, and �z�=Z. Substituting
the Eq. �4� into Eq. �1� with the force �3�, and averaging over
the oscillation period, we obtain the equation �cf. Ref. �9��,

Ẋ = ��Y − X� ,

Ẏ = rX − Y − XZ + rk�� cos��t�� ,

Ż = XY − bZ , �5�

where the terms ��
� and ��	� are neglected because, for
large �, they are all of higher orders in k�−1. Using Eq. �5�
and keeping only the terms not smaller than those of the

order of k�−1 and k, respectively, we find the equations, �̇
=�	 and 	̇=rkX cos��t�. Regarding the function X as con-
stant during the period of the function f�t�, we obtain the
solution �=−�r�k /�2�X cos��t�, and thus �� cos��t��=
−�r�k /2�2�X. Therefore, the averaged equations �5� are

Ẋ = ��Y − X� ,

Ẏ = reffX − Y − XZ ,

Ż = XY − bZ , �6�

where

reff = r�1 − rK��, K� =
�k2

2�2 � 0. �7�

As a result, the averaged dynamics of the Lorenz system in
the presence of a rapidly varying parametric force is de-
scribed by the effective renormalized Lorenz equations �6�
with the effective control parameter reff, so that all dynamical
regimes and the route to chaos discussed earlier can be ap-
plicable directly to Eq. �6�, assuming the effect of the renor-
malization.

Therefore, in terms of the averaged system, for reff�1,
i.e., under the condition

K� � �r − 1�/r2, �8�

the fixed point at the origin remains stable and, therefore, in
terms of the original Lorenz system, the chaotic dynamics
should be suppressed. Next, for 1�reff�24.74, i.e., under
the condition

�r − 24.74�/r2 � K� � �r − 1�/r2, �9�

the Lorenz chaos is also suppressed and the stable saddle-
focus points appear: X0=Y0= ±�b�reff−1�, Z0=reff−1.
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Relations �8� and �9� that follow from the averaged equa-
tions, define the conditions for the chaos suppression; they
can be expressed as relations between the amplitude and fre-
quency of the rapidly varying oscillations,

k � ��2�r − 1�/�r2, �10�

��2�r − 24.7�/�r2 � k � ��2�r − 1�/�r2. �11�

The dependencies K��r−1 �see Eqs. �8� and �9�� and k��
�see Eqs. �10� and �11�� are the key characteristics of the
chaos suppression effect that we verify numerically and com-
pare with the experimental data obtained with an analog
electronic circuit �see Figs. 4 and 5 below�.

C. Random driving force

Now we turn to the case of a random force, and treat the
function f�t� in Eq. �1� as random by formally writing f�t�
=�t�, where �t� describes a bandwidth-limited noise with a
power spectral density

P��� = 	p��� , when �1 � 
�
 � �2,

0, when 
�
 � �1, 
�
 � �2,
� �12�

and the zero mean value, ��t��=0. In order to apply the
analytical method discussed above, the noise �t� is assumed
to be composed of high-frequency components only, i.e., �̃
��0, where

�̃ = �
−�

�

�P���d��
−�

�

P���d��−1

is the characteristic frequency of the bandwidth-limited para-
metric fluctuations. Again, decomposing the system variables
into sums of slow and rapidly varying functions and averag-
ing over the period T0, we obtain

Ẋ = ��Y − X� ,

Ẏ = rX − Y − XZ + rk���t��t�� ,

Ż = XY − bZ , �13�

where the value of T0 is much smaller than the characteristic
time scale of the Lorenz system oscillations but sufficiently
larger than the time scale of fluctuations, i.e., 2� / �̃�T0
�2� /�0. Then, the equations for the rapid parts can be re-

duced to the equations, �̇=�	�t� and 	̇=r�t�X. Thus the key

averaged quantity becomes ���t��t��= ���t��̈�t�� / ��rX�. On
the other hand, for the stationary random process ��t�, the
following expressions are valid,

���t��̈�t�� = − ��̇2�t�� = − �
−�

�

�2P����d� ,

where P����= 
H���
2P��� is the power spectral density of
��t� and H���=−�rX /�2 is the frequency response function

for the equation �̈=�rX�t�. As a result, we obtain the aver-

aged equations in the form �6� where this time �cf. Eq. �7��

reff = r�1 − rK�, K = 2��
�1

�2 p���
�2 d� . �14�

The quantity K is related to the intensity of the parametric
fluctuations �t� and it is always positive. Since the averaged
equations have the same form as the original unforced Lo-
renz equations but with the effective control parameter reff
instead of r, there appears the parameter region where the
chaotic dynamics is suppressed. In particular, for reff�1, i.e.,
under the condition

K � �r − 1�/r2, �15�

the fixed point at the origin remains stable in the presence of
rapidly varying fluctuations. When 1�reff�24.74, i.e., for

�r − 24.74�/r2 � K � �r − 1�/r2, �16�

two new saddle-focus fixed points appear, with the coordi-
nates X0=Y0= ±�b�reff−1�, Z0=reff−1.

When the random function �t� describes a bandwidth-
limited white noise, P���=S0, the renormalization factor K

can be written as

K =
2���2 − �1�

�1�2
S0 =

��2�t��
�1�2

, �17�

and the effective control parameter is simplified to be

reff = r�1 −
�r

�1�2
�2�t��� , �18�

so that the chaos suppression effect is clearly proportional to
the noise intensity. Moreover, in the limit �1 ,�2→�, we
recover the result K=�k2 / �2�2� obtained earlier for the pe-
riodic parametric force �see Eq. �7��.

III. NUMERICAL SIMULATIONS AND EXPERIMENTAL
RESULTS

To verify our theory, first we perform direct numerical
simulations of the full model �1�. Figures 1 and 2 show the
results for the system temporal evolution obtained numeri-
cally by solving Eqs. �1� and �3� with the parameters:
�� ,b ,r�= �10,8 /3 ,28�. Since the mean frequency of the un-
forced oscillations of the Lorenz system is found to be �0
=8.24 �see Eq. �2��, for the above parameters the frequency
of the rapid parametric force is chosen as �=70. As shown
in the examples presented in Fig. 1, the fixed point at the
origin x=0 is stabilized for k=6.5 whereas a new stationary
point X0=6.8 appears for k=3.5. We can see from Fig. 2 that
the system dynamics in phase space after the suppression of
chaos is reduced to coexisting limit cycles �marked in solid
and dotted� whose averaged behavior is described by Eq. �6�,
shrinking to the origin as the parametric force amplitude k is
increased.

Next, we study experimentally the chaos suppression in
the Lorenz system in the framework of an analog electronic
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circuit implementation of the system �see, e.g., Refs.
�19,20��. Our circuit uses three op-amps �TL084� as the
building blocks for the operations of sum, difference, and
integration, and three analog multipliers �AD633� for the op-
erations of products.

The variables x, y, and z are represented by the respective
op-amp output voltages �see Fig. 3� all normalized to
100 mV. Time is measured in units of �=R6C=0.1 s. Such a
normalization guarantees that all variables fit within the dy-
namical range of the source �−15 V,15 V� and that the cir-
cuit operates in a frequency range of a few Hz. The param-
eters of the Lorenz model can be defined through the values
of the resistors, �=R6 /R1, b=R6 /R8, r=R6 /R3, and the val-
ues of the resistors used are R1=R2=100 k�, R3=36 k� �for
r�28�, R4=R7=10 k�, R5=5.1 k�, R6=1 M�, and R8
=374 k� with a tolerance of less than 1%. The value of the

capacitors is C=100 nF. For these values we obtain �=10
and b=2.67. The control parameter r of the Lorenz system
can be adjusted by varying the resistor R3, whereas the force
amplitude k is determined by the input signal amplitude nor-
malized to �R5 /2R3�V=71 mV �for r�28�. The frequency of
the unforced oscillations for r=28 is found to be �0=2�
�13.1 Hz. So, applying a parametric force with a frequency
larger than 65 Hz fulfills the fast modulation condition.

Figure 4 shows the threshold curves described by Eqs. �8�
and �9�, as well as Eqs. �15� and �16� that define three re-
gions with different nonlinear dynamics, as compared with
the numerical and experimental data. The domains G1 and
G2 indicate the regions for stabilizing the fixed point at the
origin and the transition to a new fixed point, respectively,
whereas the domain G3 is the region of the chaotic dynamics.
The critical values of K� were experimentally obtained by
changing the amplitude k of the parametric driving force at
the fixed frequency �=2��1 kHz. The corresponding ex-
perimental data are presented in Fig. 4 by squares and dia-
monds. In the experiment with parametric fluctuations �the
data are marked by asterisks�, we applied bandwidth-limited
white noise with the limits �1=2��0.7 kHz and �2=2�
�1.3 kHz by means of an external noise generator.

Figure 5 shows the dependence of the critical amplitude
of the parametric force for the chaos suppression as a func-

FIG. 1. �a� Numerical simulation of chaos suppression shown
for the evolution of the function x�t�. The high-frequency paramet-
ric force is turned on at the point t=20, and it moves the system to
a new fixed point �x�t��=6.8, for k=3.5, or it stabilizes the origin
x�t�=0, for k=6.5. �b�, �c� Phase plane representation of the system
dynamics for �b� k=3.5 and �c� k=6.5.

FIG. 2. Phase plane representation of the system dynamics after
the suppression of chaos, at different values of the parametric force
amplitude �marked in the figure�.

FIG. 3. Schematic of the analog electric circuit representing the
Lorenz oscillator, including the parametric driving force and
fluctuations.
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tion of the frequency. Solid and dashed lines represent the
theoretical results described by Eq. �10� and Eq. �11�, respec-
tively, whereas the experimental data are plotted as squares
and diamonds. As shown in Fig. 4 and Fig. 5, the experimen-
tal results are in good agreement with the theoretically cal-
culated threshold dependencies.

IV. CONCLUSIONS

We have studied analytically, numerically, and experimen-
tally the suppression of chaos in the Lorenz system driven by
a rapidly oscillating periodic or random parametric force. We

have derived theoretical criteria for chaos suppression which
indicate that, for a fixed value of the control parameter r, the
critical amplitude of the force required for the suppression of
chaos is proportional to its frequency. The theoretical criteria
for chaos suppression have been found to agree well with
both the results of numerical simulations and the experimen-
tal data obtained for an analog electronic circuit.
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